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The neighbors-overlap function

We define a neighbors-overlap function Qn, as described in the text, which represents the fraction of cells that have
lost two or more neighbors in time t. We decided upon the cutoff value of two or more neighbors based on the following
observation. We compare the results obtained from the neighbors-overlap function with the results obtained from the
self-overlap function. The two should give similar results for an isotropic tissue. The characteristic relaxation time
obtained using the standard self-overlap function is similar to the one obtained from the neighbors-overlap function
(Fig. S8(A)). On the contrary, a definition based on a cutoff value of losing three or more neighbors show a difference
between the results obtained from the self-overlap function and that of the neighbors-overlap function (Fig. S8(B)).

Irreversible T1 transitions

In our model, cells go through a T1 transition whenever the edge l between four neighboring cells becomes less
than a critical length lc, and the T1 delay count is reached. The same group of four cells can go back and forth
between their original configuration and their after T1 configuration until the final steady state condition is obtained
(Fig. S7(A)). Hence, these flipping events can cause overcounting of the number of true T1 transitions. To avoid this,
we calculate the number of successful T1 events where cells rearrange and stay in their new configurations. In other
words, we calculate the number of irreversible T1 events.

To calculate the irreversible events (Nirr), we first characterize the reversible events (Nrev) in our simulations.
When four cells go through a T1 transition, the two cells share an edge lose a vertex and the two cells that are
not neighbor before the T1 transition gain a vertex (Fig. S7(A)). We record the cell configurations that go through
the T1 transition and scan through the rest of the simulation steps to check whether the cell configurations are
ever back to their “before T1” configurations in the next τ + tT1 steps. Here, τ is the natural time unit of the
simulations. If the configuration is repeated, we count the event as reversible, and we call the time between the two
same configurations reversibility time, tR. As we are interested in instantaneous successful T1 events over time, we
search for the reversibility in short timescales, namely in τ steps. Fig. S7(B) is a histogram of reversibility time for
tT1 = 0 which fits to a power law (Fig. S7(B) inset) with a long tail which indicates that most of the flipping T1
events happen in very short timescales.

We calculate the fraction of irreversible events, f = Nirr/Ntotal. For an anisotropic tissue, 70% of the T1 events
are irreversible for tT1 = 0 while almost all of the events are irreversible for tT1 > 0 (Fig. S7(C)). For an isotropic
tissue, only 20% of the T1 transitions are irreversible for tT1 = 0 (Fig. S7(D)). The irreversibility increases as the tT1

delay time increases (Fig. S7(D)). To calculate the successful T1 events (main text Fig. 5(A) and (B)), we multiply
the total number of T1 transitions by the fraction of irreversible events f (Fig. S7(C)) at each tT1 value. Similarly, for
an isotropic tissue (Fig. S7(E)), we multiply the total number of T1 transitions by the fraction of irreversible events
f (Fig. S7(D)) at each tT1 value.

Plateau value for the tissue aspect ratios in the absence of T1 transitions

As discussed in the main text and seen in Fig. 2(D), in the absence of T1 transitions (i.e., at simulation timepoints
before the T1 delay timescale) tissues under anisotropic tension will increase their aspect ratio up to a plateau value
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and get stuck there. Numerical simulations confirm that this plateau value varies with both the isotropic tension
κPP0 in the bare vertex model and the additional anisotropic line tension γ0 (Fig. S9).

To predict this plateau value analytically, we hypothesize that the plateau occurs when the shapes are at an energy
minimum under the constraint there are no T1 transitions. We propose that the cells undergo a two-step process
to minimize their energy, which is easiest to see starting from an ordered isotropic hexagonal packing, shown in
Fig. S10(A). First, the large line tension on the vertical edges will cause those to shrink to zero length, generating a
diamond pattern with 4-fold coordinated vertices, as shown in Fig. S10(B). This process should be independent of γ0
and P0 for values of γ0 that are sufficiently large, and one can show it results in a change of aspect ratio by a factor
of 1.58: AR1 = 1.58.

Next, because that state is perfectly symmetric, the system can undergo a symmetry breaking so that some edges
become shorter and closer to vertically-oriented, while alternating edges become longer and more horizontally oriented.
In an ordered systems this generates some flag-shaped parallelograms, but in a disordered system one expects shapes
that are roughly rectangular with the short sides oriented along the axis of higher tension, as shown in Fig. S10(C).
To calculate the minimum energy state of such rectangles, we label the vertical length l1 and horizontal length l2,
and assume the area of each cell is fixed to unity so that l2 = 1/l1. Taking the derivative of the part of the vertex
energy functional related to line tensions, E ∼ γ0l1 + κP (P − P0)2, and then setting the derivative with respect to l1
equal to zero results in a 4th order polynomial equation:

l41 +

(
γ0

8κP
− P0

2

)
l31 +

P0

2
l1 − 1 = 0. (1)

For a given values of κP , P0, and γ, we can solve this equation for its positive roots and identify the energy minimizing
value of lmin

1 . The addition change to the global aspect ratio of the tissue allowed by these rectangles is simply ratio
of l2 = 1/l1 to l1: AR2 = 1/(lmin

1 )2.
Finally, the total change to the aspect ratio under both processes is simply ARtot = AR1 × AR2 = 1.58/(lmin

1 )2.
This analytic prediction is illustrated by the blue squares in Fig. S10(D). The observed plateau values are given by
the red circles, and they are in fairly good agreement. The analytic prediction overestimates the aspect ratio for the
lowest value of γ0, likely because the tension isn’t sufficiently large to shrink vertical edges to zero in the first process.
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FIG. S1. The characteristic relaxation time on a linear scale. The characteristic relaxation time τSα on linear scale
(log-log scale as in Fig. 1) as a function of T1 delay time normalized by the collective response timescale τSα0 without T1 delay.
The dashed line is the best linear fit to high T1 delay region with a slope of m = 1.13. Colors correspond to different values of
p0 = 3.74, 3.76, 3.78...3.9 (darker to light blue), for fixed T = 0.02, and N = 256.
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Figure 1. Vertex model with T1 delay time
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FIG. S2. The characteristic relaxation time depends on the cell shape. A) The characteristic relaxation time in the
absence of T1 delays, defined by the self-overlap function, for various p0 values for a system size with N = 1024. The tissue
becomes more viscous as p0 decreases at fixed temperature T = 0.02. B) Log-log plot showing collapse of the characteristic
relaxation time τSα as a function of T1 delay time normalized by the collective response timescale τSα0 without a T1 delay.
Colors correspond to different values of p0 = 3.74, 3.76, 3.78...3.9 (darker to light blue), for fixed T = 0.02, and N = 1024. The
inset shows the characteristic relaxation time τSα as a function of T1 delay time without any normalization, for the same values
of p0..
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Figure S2. Anisotropic vertex model with T1 rearrangement time (note: a,a’ (pure 
shear), b) different \gamma (compared to Fig.2 ), c) different T
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FIG. S3. The behavior of the characteristic relaxation time is independent of the magnitude of the line
tension in the anisotropic model. A) The characteristic relaxation time τNα as a function of T1 rearrangement delay
time for anisotropic tissue simulations with anisotropic line tension amplitude of γ0 = 0.01 (A), γ0 = 0.1 (B) and γ0 = 0.5
(C). D) Overlap of the data in (A), (B), (C) and Fig. 2(C). Darker to lighter tones for each color represents the data for
p0 = 3.74, 3.76, 3.78...3.9, and other parameters are T = 0.02, and N = 256. Each data set are normalized by the corresponding
characteristic relaxation time τNα0 where the T1 rearrangement is instantaneous, tT1 = 0.
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Anisotropic, gamma0=1.0, T=0

FIG. S4. The behavior of the characteristic relaxation time is the same at zero temperature. Data collapse
for p0 = 3.74.376, 3.78...3.9 (darker to lighter blue), N = 256 and γ0 = 1.0 at zero temperature. The characteristic relaxation
time, τNα as a function of T1 rearrangement delay time normalized by the collective response timescale τNα0(tT1 = 0).
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Figure S3. Anisotropic vertex model with T1 rearrangement time. N=1024
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FIG. S5. Simulations of an anisotropic tissue with a larger system size. A) An anisotropic line tension on vertical
edges is introduced to obtain global anisotropic changes to tissue shape. B) Data collapse for p0 = 3.74.376, 3.78...3.9 (darker
to light blue), T = 0.02, N = 1024 and γ0 = 1.0. The characteristic relaxation time, τNα as a function of T1 rearrangement
delay time normalized by the collective response timescale τα0(tT1 = 0). The dotted line is a slope of 1. C) The number of
T1 transitions per cell over time and at the maximum averaged over 10 realizations (inset) for T1 delay time of tT1 = 0, 0.13,
0.46, 1.67, 5.99, 21.5, 77.4, 278.2 and 1000 τ (dark green to yellow), p0 = 3.74, T = 0.02, N = 1024 and γ0 = 1.0. D) The
aspect ratio of the simulation box over time for T1 delay time of tT1 = 0, 0.13, 0.46, 1.67, 5.99, 21.5, 77.4, 278.2 and 1000 τ
(dark green to yellow), p0 = 3.74, T = 0.02, N = 1024 and γ0 = 1.0. E) The time (tAR) at which the system first goes above
the plateau value as a function of tT1 for each aspect ratio curve in (D). F) The rate of elongation obtained from the aspect
ratio curves in (D) as a function of tT1 delay time. Both (C), (D), (E) and (F) are from 10 realizations. Error bars represent
one standard error.
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Top panel cutoff=0.11
Bottom panel cutoff=0.04

Figure S4. Many-fold vertex formation (note: per cell, p0=3.74) isotropic)
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FIG. S6. Counting very short edges as a proxy for many-fold vertices. Number of very short edges per cell ξ for an
anisotropic tissue as a function of time (A). Shaded lines represent different T1 delay times tT1 = 0, 0.13, 0.46, 1.67, 5.99, 21.5,
77.4, 278.2 and 1000 τ (dark green to yellow), for a tissue with τNα0 = 0.89τ – p0 = 3.74, T = 0.02, N = 256 and γ0 = 1.0. The
cutoff value to threshold very short edges as a proxy for multi-fold coordination is 0.04

√
A0. (A’) Ensemble-averaged maximum

value of ξ over a simulation timecourse vs. the T1 delay time tT1 normalized by τNα0. The average is taken over 10 independent
simulations, and error bars correspond to one standard error. Number of very short edges per cell ξ over time (B, C) and the
ensemble-averaged maximum value of ξ over a simulation timecourse (B’, C’) for an isotropic tissue simulations of T1 delay
time of tT1 = 0, 0.13, 0.46, 1.67, 5.99, 21.5, 77.4, 278.2 and 1000 τ (dark green to yellow), p0 = 3.74, T = 0.02 and N = 256.
The cutoff value to threshold very short edges as a proxy for multi-fold coordination is 0.04

√
A0 in (B, B’) and 0.11

√
A0 in (C,

C’). The average is taken over 10 independent simulations, and error bars correspond to one standard error.
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FIG. S7. Number of successful T1 transitions. A) Schematic of a reversible T1 transition. The two cells that are
neighbor before the T1 transition lose a vertex (top and bottom cells) and the cells that are not neighbors before the T1
transition gain a vertex and become neighbors (right and left cells). Vertices of the cell on the left are labeled as 1,2,...6. The
same cell has a configuration of vertices as 1,2,...7 after the T1 transition. If the T1 transition is reversible, then the cell goes
back to its original configuration of vertices 1,2,...6. We track such cell configuration changes in our simulations to determine
if a T1 event is reversed. B) Histogram of reversibility time tR which fits to a power law (inset black points) for an anisotropic
tissue of p0 = 3.74, T = 0.02, N = 256, tT1 = 0 and γ0 = 1.0. C) Fraction of irreversible events as a function of T1 delay time
for an anisotropic tissue of p0 = 3.74, T = 0.02, N = 256 and γ0 = 1.0. D) Fraction of irreversible events as a function of T1
delay time for an isotropic tissue of p0 = 3.9, T = 0.02 and N = 256. E) Number of successful (irreversible) T1 transitions at
the equilibrium averaged over 10 realizations for an isotropic tissue of p0 = 3.9, T = 0.02 and N = 256. Error bars represent
one standard error.

Figure S6. New overlap function comparison
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FIG. S8. The characteristic relaxation time obtained using the standard self-overlap function vs. the neighbors-
overlap function. The characteristic relaxation time, τα, obtained using neighbors-overlap function (based on losing 2 or more
neighbors (A) and losing 3 or more neighbors (B)), as a function of T1 rearrangement time for p0 = 3.74, 3.76, 3.78...3.9 (darker
to light blue) and T = 0.02 for an isotropic tissue. Both (A) and (B) are plotted together with the characteristic relaxation
time obtained using the self-overlap function for comparison for p0 = 3.74, 3.76, 3.78...3.9 (dark purple to light pink). Each
data set are normalized by the corresponding characteristic relaxation time τα0 where the T1 rearrangement is instantaneous,
tT1 = 0.
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FIG. S9. Aspect ratio plateau value varies with the additional anisotropic line tension γ0. The aspect ratio of
the simulation box over time for T1 delay time of tT1 = 0, 0.13, 0.46, 1.67, 5.99, 21.5, 77.4, 278.2 and 1000 τ (dark green to
yellow), p0 = 3.74, T = 0.02 and N = 256. The anisotropic line tension amplitude γ0 = 0.1 (A) and γ0 = 0.5 (B). The data in
(A) plateau at aspect ratio of ∼ 1.4 and the data in (B) plateau at aspect ratio of ∼ 2.2.
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Figure S8 

FIG. S10. Analytical prediction for the plateau values of the aspect ratio as a function of time. A) A hexagonal
unit box with a hexagon side of a. B) The cells meet at a 4-fold coordinated vertex after a high tension is applied on the
vertical edges of the hexagons in (A). Cells form a diamond pattern with a side length of a. Both in (A) and (B), Lx and Ly
are the sides of the box along the horizontal and vertical direction. C) A rectangular grid of cells with sides l1 along the vertical
and l2 along the horizontal direction. D) Analytical prediction of the plateau values observed in simulations with various γ0
values (Fig. 2D, Fig. S9A, Fig. S9B). Red circles correspond to the plateau values in the simulations. Blue squares correspond
to the analytical prediction for the total change to the aspect ratio as described in Supporting Information text.
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